Unit 7: Input/Output Files

Objectives

- Understand different ways of storing and retrieving information from the hard drive.
- Understand the differences between an ASCII file an a binary file.
- Learn how to write and read ASCII and binary files.

2

Content

Intro

- Manually: Import/Export data
- Programmatically
 - ASCII Files
 - Binary Files

Input and Output

- Sometimes we may need to permanently store data and thus data will persist after the execution of the program.
- We may also need to import or export data to other applications.

IMPORT / EXPORT

Import / Export

Export:

- save: Save workspace variables to a file with the extension .mat
- Import
 - *load:* Import previously exported MATLAB variables using the command save
 - xlsread: Import data from excel files
 - Using the import data assistant

ASCII AND BINARY FILES

ASCII and Binary Files

- We use ASCII and Binary files to save the output data that our program generates.
 - These files are stored in our hardrive in the same way as any other data file like word files, excel files, music files..
 - **ASCII files** contain **text** (ASCII characters). We normally save them with the file extension *.txt*
 - **Binary files** contain **binary information** (0s and 1s), which could represent numbers, images, sounds,....

ASCII and Binary Files

• The information in the file (ASCII or Binary) is read sequentially, such as on a music tape.

Interactive Systems Group

ASCII and Binary Files

- We read and write the information in the files sequentally:
 - Initially, when you open the file, the "pointer" is on the first position of the file
 - When we read or write (text or binary) the pointer moves to the next position after the data read or writen.
 - Most of the times you will want to write at the end of the file, so you don't overwrite what it's already in the file.

ASCII FILES

Read and Write ASCII Files

- An ASCII file contains ASCII characters
 - Text files which can be read by a naked eye
- ASCII files can be created by:
 - Our programs: instead of printing the output on screen we create an ASCII file and put print the results there
 - <u>Text editors</u>: ASCII text editors as notepad, textedit, the MATLAB editor,...
 - Remember: the Microsoft Word editor is not an ASCII text editor so don't use it to create ASCII files for your programs.

Creating an ASCII Files with the MATLAB editor

- To create an ASCII file:
 - Click on "New script"
 - Write the text you want to save in the file
 - Save the file using the ".txt" extension

Write the name of your file including the .txt at the end

Creating an ASCII Files with the MATLAB editor

- ASCII files can be created by:
 - Click on "New script"
 - Write the text you want to save in the file
 - Save the file using the ".txt" extension

Write the name of your file including the .txt at the end

Read and Write ASCII Files

- In an analogous way to other programming languages as C, MATLAB provides functions to read and write data into an ASCII file.
- The process will be:
 - 1 step: Open file (fopen)
 - 2 step: Read or write information (fscanf, textscan, fget, fprintf)
 - □ 3 step: Close file (fclose)

Read and Write ASCII Files

- The information in the file is read sequentially, such as on a tape.
- The "open" operation leaves the reader pointer marking the beginning of the tape
- The "read" or "write" operations move the pointer to the right

tudent name: Pedro - Age: 19	– Bachelor Degree: Biomed					
1 Reader	After Reading "Age: 19" the reader pointer has moved to the right					
tudent name: Pedro - Age: 19	– Bachelor Degree: Biomed					
Reader						

Opening and closing files

Control characters for opening a text file

Characters	Operation
'rt'	Open file for reading (default).
'wt'	Open file, or create new file if it doesn't exist, for writing; discard existing contents, if any
'at'	Open file, or create new file if it doesn't exists, for writing; append data to the end of the file.
'rt+'	Open file for reading and writing.
'wt+'	Open file, or create new file if it doesn't exist, for reading and writing; discard existing contents, if any.
'at+'	Open file, or create new file if it doesn't exist, for reading and writing; append data to the end of the file

Opening files

Reader

When we open the file with 'rt' or 'wt' the reader points at the beggining of the file

Student name: Pedro - Age: 19 – Bachelor Degree: Biom

Checking out if the pointer is at the end of the file

feof(fi)
 Returns 1 if the file position indicator has been set by the previous operation in the end of the file, and 0 otherwise.
 Note: fi is a file identifier

feof is very usefull. In many problems you will have to read files until you reach the end of the file. For example, when counting the elements in a file that satisfy a given condition. In these cases we use 'while' loops that read until they reach the end of the file... and you will know that because at that point *feof(fid)* will return 1.

Writting ASCII files

Writing to a text file

fprintf	(fi,	'control	characters',	var1,	var2,)
	\uparrow	1	N	\uparrow	
F	-ile	String for i	ndicating the	Varia	ables to be written
i	dentifier	format of t	he information to		
		be read.			
		'%s'	strings		
		'%c'	characters		
		'%d'	integers		
		'%f'	float point		

We use **fprintf** in the same way as when printing in the screen. The only difference is that we **specify the id (file identifier)** of the file in which we want to print.

Write a script which asks the user to introduce a sentence, and store the sentence in a ASCII file called 'sentence.txt'

Write a script which asks the user to introduce a sentence, and store the sentence in an ASCII file called 'sentence.txt'

```
vfile = fopen('sentence.txt','wt');
if vfile == -1
    disp('Error when trying to open the file');
else
    vsentence = input('Introduce a sentence: ','s');
    fprintf(vfile,'%s',vsentence);
    fclose(vfile);
end;
```


Write a script which asks the user to introduce a sentence, and store the sentence in a ASCII file called 'sentence.txt'

```
vfile = fopen('sentence.txt','wt');
if vfile == -1
    disp('Error when trying to open the file');
else
    vsentence = input('Introduce a sentence: ','s');
    fprintf(vfile,'%s',vsentence);
    fclose(vfile);
```

end;

What would you find in the 'sentence.txt' file if you executed this code twice?

25

Write a script which asks the user to introduce a sentence, and store the sentence in a ASCII file called 'sentence.txt'

```
vfile = fopen('sentence.txt','wt');
if vfile == -1
    disp('Error when trying to open the file');
else
    vsentence = input('Introduce a sentence: ','s');
    fprintf(vfile,'%s',vsentence);
    fclose(vfile);
```

end;

What would you find in the 'sentence.txt' file if you executed this code twice? **Only the last sentenced introduced**

 Write a script which asks the user to introduce a sentence, and store the sentence in a ASCII file called 'sentence.txt' without deleting the content stored in it.

 Write a script which asks the user to introduce a sentence, and store the sentence in a ASCII file called 'sentence.txt' without deleting the content stored in it.

```
vfile = fopen('sentence.txt', 'at');
if vfile == -1
    disp('Error when trying to open the file');
else
    vsentence = input('Introduce a sentence: ','s');
    fprintf(vfile,'%s',vsentence);
    fclose(vfile);
end;
```

Reading ASCII files

- You can use three different commands to read from a text file:
 - □ fscanf => returns the data read in a vector or matrix
 - □ textscan => returns the data read in a cell array
 - □ fgets / fgetl => returns <u>a string</u> containing a whole line

Reading ASCII files: fgets

Reading a whole line.

- sline = fgets(file_ld)
 Reads the next line of the specified file and returns a string containing all the characters including the newline character at the end of the line ('\n')
- sline = fgetl(file_ld)
 Reads the next line of the specified file and returns a string containing all the characters removing the newline character.

MATLAB marks the end of a line of text using the special character: \n Note: this is a character you won't see if you open the file in a file editor.. but you'll know is there because the next character will be displayed in the a new line

uc3m Universidad Carlos III de Madrid

Reading ASCII files: fgets

Note: The special character \n has the number 10 in the ASCII table. If in one of your programs you need to check if a character read from a file is the \n you should compare it with char(10).

Example

if vcharacter == *char(10)*

. . .

<u>Never try something like this</u>: if vcharacter == '\n'

MATLAB would think you are "trying to" compare vcharacter with a String that contains the characters '\' and 'n'

Reading ASCII files: fscanf and textscan

- Sometimes you don't want to read the whole line of a file.
- To only read some pieces of information you can use *fscanf* or *textscan*
 - You specify how many pieces of what type of information (integers, characters, double..) you want to read.
 - MATLAB reads the information in the file and (tries to) converts it into the type of data you asked for.

Reading ASCII files: fscanf

Reading from a text file: fscanf

REMEMBER: fscanf returns a vector or a matrix... and this kind of data structure can only store one single type of data

Reading ASCII files: fscanf

Reading from a text file: fscanf

If the content in the file doesn't match what you ask to read using the control characters.. you will get errors or unexpected results.

uc3m Universidad Carlos III de Madrid

DEI+

Reading ASCII files: fscanf

Examples:

```
[var1, count] = fscanf (fi, '%s', 1);
    Reads one string. MATLAB considers that the strings in
    the file are delimited by blank spaces.
[var1, count] = fscanf (fi, '%f', 2);
    Read two floating-points numbers and stored them in the
    positions var1(1) and var1(2)
[var1, count] = fscanf (fi, '%10c', 1);
    Reads one block of ten characters.
[var1, count] = fscanf (fi, '%f');
    Read all the floating-points numbers and stores them in
    the vector var1. Count contains the number of
    floating-point numbers MATLAB could read.
[var1, count] = fscanf (fi, 'The password is: %s',1);
    Skip the sentence 'The password is: ' in the file and
    return the contiguous string
```

38

Write a script which reads one word from a text file called 'sentence.txt' and prints it on screen. Use fscanf

Example

Write a script which reads one word from a text file called 'sentence.txt' and prints it on screen. Use fscanf

```
vfile = fopen('sentence.txt', 'rt');
if vfile == -1
    disp('Error when opening the file');
else
    vword = fscanf (vfile,'%s',1);
    fprintf('The word is: %s', vword);
    fclose(vfile);
end;
```


Write a script which reads one word from a text file called 'sentence.txt' and prints it on screen. Use fscanf

```
vfile = fopen('sentence.txt', 'rt');
if vfile == -1
    disp('Error when opening the file');
else
    [vword, vcont] = fscanf (vfile,'%s',1);
    if vcont > 0 % with this we check that we have read
            % something
            fprintf('The word is: %s', vword);
    end;
    fclose(vfile);
```

41

Write a script which reads all the words of a text file called 'sentence.txt' and prints them on the screen. Use fscanf

Write a script which reads all the words of a text file called 'sentence.txt' and prints them on the screen. Use fscanf

43

```
vfile = fopen('sentence.txt','rt');
if vfile == -1
    disp('Error when opening the file');
else
    while feof(vfile) == 0
        vword = fscanf (vfile,'%s',1);
        fprintf('\nThe word is: %s', vword);
    end
    fclose(vfile);
end;
```


 Write a script which asks the user to introduce the name of a file to read and prints on screen <u>all the lines in the file.</u>

Write a script which asks the user to introduce the name of a file to read and prints on screen <u>all the lines in the file.</u>

```
vname = input('Introduce the name of the file', 's');
vfile = fopen(vname, 'rt');
if vfile == -1
    disp('Error when opening the file');
else
    while (feof(vfile) == 0)
    vline = fgets (vfile);
The variable vline contains
ends up with the character
```

end;

end;

fclose(vfile);

The variable vline contains an string that ends up with the character '\n'

fprintf(`%s ', vline);

Write a script which asks the user to introduce the name of a file to read and prints on screen <u>all the lines in the file.</u>

```
vname = input('Introduce the name of the file', 's');
vfile = fopen(vname,'rt');
if vfile == -1
```

```
disp('Error when opening the file');
```

else

```
while (feof(vfile) == 0 (
        vline = fgetl (vfile);
      fprintf('\n%s ', vline);
end;
```

```
fclose(vfile);
```

```
uc3m<sup>d</sup>Universidad Carlos III de Madrid
```

In this case, when using fgetl, the strings will not contain the '\n' so we change of line ourselves in the fprintf.

Reading ASCII files: textscan

Reading from a text file

The output of TEXTSCAN is a CELL ARRAY which itself contains arrays of the various data inputs.

Reading ASCII files: textscan

Reading from a text file

IMPORTANT:

When reading Strings TEXTSCAN returns a cellarray whose cells are <u>cellarrays</u> that contain Strings or vectors of numbers When reading numbers TEXTSCAN returns a cellarray whose cells are <u>vectors</u> of numbers

uc3m Universidad Carlos III de Madrid

uc3m Universidad Carlos III de Madrid

Reading ASCII files: textscan

Examples:

C= textscan (fi, '%s', 1);
 Reads one string and places it in C{1}{1}.
C= textscan (fi, '%d', 1);
 Reads one number and places it in C{1}(1).
C= textscan (fi, '%s', 2);
 Reads two strings and place them in C{1}{1} and
 C{1}{2}
C= textscan (fi, '%s');
 Reads all the strings in the file and place them
 in C{1}{1}, C{1}{2}, C{1}{3}, C{1}{4}..

Other functions

• Other functions:

- varNum = str2num(varString)
 Converts a string containing numbers into a number. Example: var = str2num('568')
- frewind(fi) Sets the file position indicator to the beginning of a file.

Other functions

• Other functions:

- varNum = str2num(varString)
 Converts a string containing numbers into a number. Example: var = str2num('568')
- frewind(fi) Sets the file position indicator to the beginning of a file.

but we are <u>never</u> going to use this one!!!

Write a script which reads all the words of a text file called 'sentence.txt' and prints them on the screen. Use textscan

Write a script which reads all the words of a text file called 'sentence.txt' and prints them on the screen. Use textscan

```
vfile = fopen('sentence.txt','rt');
if vfile == -1
    disp('Error when opening the file');
else
    while (feof(vfile) == 0)
        cword = textscan(vfile,'%s',1);
        fprintf('\nThe word is: %s', cword{1}{1});
        end;
        fclose(vfile);
end;
```


Sumary: Reading ASCII files

• You can use three different commands to read from a text file:

□ fscanf => returns the data read in a vector or matrix

Recommended for reading numbers, or when reading one single string at a time

Lextscan => returns the data read in a cell array Recommended for reading text files containing strings

fgets => returns a whole line (until \n) of text in a string
 Recommended when it is not necessary to
 process or split up the information in the
 line. For example: when copying files,
 counting lines, one single string per line,
 etc.